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Abstract 

This document discusses autonomous diagnosis of aerospace systems. 
The need for automated diagnosis in aerospace and the approach of using 
knowledge-based systems are examined. Research issues in knowledge- 
based diagnosis which are important for aerospace applications are treated 
along with a review of recent relevant research developments in Artificial 
1ntelligence.The design and operation of some existing knowledge-based 
diagnosis systems are described. The systems described and compared 
include the LES expert system for liquid oxygen loading at NASA Kennedy 
Space Center, the FAITH diagnosis system developed at the Jet Propulsion 
Laboratory, the PES procedural expert system developed at SRI 
International, the CSRL approach developed at Ohio State University, the 
StarPlan system developed by Ford Aerospace, the IDM integrated 
diagnostic model, and the DRAPhys diagnostic system developed at NASA 
Langley Research Center. 
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Preface 

This technical report is a preprint of a chapter which will be published as part of 
a book titled, "Machine Intelligence and Autonomy for Aerospace Systems." 
The book will be a volume of the AlAA Series Proa ress in Astron- and 
Aeronautics. However, the earliest estimate of the date of publication of this 
book is some time in the spring of 1988. I have decided to issue this technical 
report in the belief that the technology of knowledge-based systems for 
automated diagnostic applications is of substantial immediate interest to 
engineers, technical staff, and aerospace managers who are currently 
developing, plan to develop, or are simply curious about the area. 

The reader will note that I have to a large extent avoided discussion of much of 
the background, rationale, or basic technology behind knowledge-based 
systems. Many other high quality references for this already exist. I have also 
chosen not to describe simple rule-based systems for diagnosis in much detail. 
This particular implementation approach was one of the first to be applied to the 
problem of diagnosis (as part of the MYCIN system developed by Shortliffe at 
Stanford in the late 1970's) and its success instigated the development of many 
commercial products for developing rule-based systems. Instead, the chapter 
primarily discusses the overall architecture of knowledge-based approaches to 
diagnosis which may or may not be suitable for implementation using rule- 
based systems. 

David J. Atkinson 
Jet Propulsion Laboratory 

4 September 1987 

PRECEDING PAGE BLANK NOT FILMED 

V 



TABLE OF CONTENTS 

1 . 0 Introduction .............................................................................................................. 1 

2.0 Knowledge for Diagnosis ..................................................................................... 3 

2.1 Deep Model Diagnostic Systems ............................................................ 4 

2.2 Shallow Model and Heuristic Diagnostic Systems .............................. 7 

2.3 Procedural Knowledge ............................................................................. 9 

2.4 Problem Hierarchy Specialists ................................................................ 13 

3.0 Coordinating Hybrid Knowledge in Diagnostic Systems ............................... 17 

4.0 Conclusion .............................................................................................................. 23 

Bibliography ................................................................................................................... 25 

Fiaures 

1 . LOX Transfer at KSC .............................................................................................. 5 

2 . Portion of RCS Malfunction Procedure ............................................................... 1 1  

3 . Portion of KA for Fuel Cell Malfunction ................................................................ 12 

4 . Partial Diagnostic Hierarchy for CSRL Auto-Mech ........................................... 14 

5 . Overview of the Integrated Diagnostic Model (IDM) ......................................... 18 

6 . DRAPhys Multi-Stage Diagnostic Process ......................................................... 19 

PREEI7JNG PAGE BLANK NOT FILMGD 

vi i 



1 .O Introduction 
This document will discuss autonomous diagnosis of aerospace systems. In 
particular, we will examine the need for automated diagnosis in aerospace 
and the approach of using knowledge-based systems for this purpose. We 
will also discuss some of the research issues in knowledge-based diagnosis 
which are important for aerospace applications. Finally, we will review some 
recent research developments in this area of artificial intelligence and 
describe the design and operation of some existing knowledge-based 
diagnosis systems. 
A critical aspect of the process of evaluating the performance of spacecraft 
and ground support systems and determining their ability to meet mission 
objectives is in assessing the state-of-health of these systems. The traditional 
approach to diagnosis of aerospace systems is to anticipate all one-point and 
two-point failure modes. Elaborate checklists are constructed which, it is 
hoped, will serve to identify all of these failure modes and corrective actions. 
The problem which arises is that as the complexity of spacecraft and ground 
systems increases, the resources required to anticipate failure modes and 
construct exhaustive checklists becomes combinatorially explosive. 
Furthermore, as a diagnostic tool, checklists seldom embody the rationale for 
the procedures which are being followed. This can make it tedious and 
difficult for humans who are performing checklist actions to focus on the 
immediate problem at hand. Finally, an important consideration in fault 
diagnosis is that quick response to failures may be critical. The ability of 
human ground operators or astronauts to compensate for a failure during 
diagnosis, determine a diagnosis with incomplete or partial information, and 
quickly institute a recovery procedure diminishes as system complexity 
increases. These considerations make the process of diagnosis a desirable 
candidate for automation. 
Conventional automation techniques are insufficient in many monitoring, 
diagnostic, or maintenance applications (Richardson, 1984). Control and 
diagnostic mechanisms in these approaches cannot be dynamically matched 
to the exigencies of the situation. They are typically inflexible and cannot 
easily accommodate the reconfiguration or modification of a device under 
test. Such systems are usually unresponsive to the varying degrees of skill of 
the different technicians who use them. Poor real-time performance is also 
symptomatic of conventional automation approaches to diagnosis. 
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2.0 Knowledge For Diagnosis 
Knowledge-based systems for diagnosis provide an approach to automating 
much of the process of assessing the state-of-health of spacecraft and ground 
systems. The demonstrated potential is great for overcoming many if not all 
of the limitations of conventional automation approaches mentioned in the 
previous section. 
One way to characterize the various Artificial Intelligence approaches to 
diagnosis is by the type of knowledge which is encoded and used in the 
diagnostic reasoning process. This knowledge may be divided into two 
predominant areas: Heuristic or experiential knowledge, and model-based 
knowledge. Heuristic knowledge generally attempts to capture the 
inferential techniques of humans who have expertise in diagnosing faults in 
the given problem domain. Model-based knowledge attempts to represent 
the structural, functional, and causal information about the system being 
diagnosed. Some diagnostic expert systems utilize knowledge of both types. 
Heuristics which are the result of a human expert's experience with problem- 
solving in a domain are sometimes called expert knowledge and the 
programs which use this knowledge expert systems. While the scope of 
high-performance knowledge-based systems certainly includes more 
techniques than this particular approach, the heuristic knowledge expert 
systems approach to diagnosis has a long history in artificial intelligence 
research, particularly in the domain of medicine. (For examples of 
knowledge-based medical diagnosis systems and related issues, see 
Szolovits, 1982.) 
Heuristic diagnostic knowledge has the advantage of being relatively easy to 
represent or encode in a knowledge base. Human experts often find it 
convenient to describe their diagnostic inferences in terms of assertions and 
conclusions which may be derived in certain situations. This type of 
knowledge is usually represented by production rules which encode 
inferential knowledge as a set of situation - action pairs. The selection and 
invocation of these rules typically forms a deductive chain of reasoning when 
the rules are applied in a particular order. Since the order of rule invocation 
is largely dependent on the problem at hand, these systems can be very 
sensitive to the data being processed (or data driven) in a way that strictly 
procedural approaches cannot. Heuristic inferences implemented as 
production rules encode a high level view of the expert's decision making 
processes. For this reason, diagnosis using heuristic knowledge is frequently 
called shallow reasoning. 
When the diagnostic problem is to automate the largely routine diagnoses of 
human experts, the heuristic approach to diagnosis is most appropriate. 
Heuristic knowledge has also been frequently employed when inferences are 
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uncertain due to missing or erroneous knowledge or symptomatic data, or in 
other situations when the deductive search space is combinatorially large. 
Heuristic knowledge derived from experience is occasionally the only type of 
knowledge which may be used in an expert system when the domain for 
problem solving is not well understood. 
In diagnosis of aerospace systems, heuristic knowledge must frequently be 
co m bi ned with model-based knowledge. Mode I- based knowledge breaks 
free of many of the limitations of human expertise by representing the 
structure and function of the individual components of the system being 
diagnosed, often at many different levels of abstraction. Causal interactions 
between components and allowable diagnostic inferences are often explicitly 
stated in model-based knowledge, whereas they may be only implicitly 
represented in heuristic knowledge. As such, model-based knowledge 
provides a more complete representation of the system and its behavior than 
heuristic knowledge. This property can lead to better problem-solving near 
the periphery of the system's knowledge where heuristic knowledge might be 
applied inappropriately. Ultimately, in the case of novel failures much if  not 
all of the heuristic knowledge derived from experience will fail, and more 
fundamental knowledge may need to be used exclusively to locate a failure. 
For these reasons, diagnosis using model-based knowledge is frequently 
called deep reasoning, or reasoning from first principles. Model-based 
diagnosis is applicable when human expertise is unavailable or incomplete, 
or when detailed explanations for failures must be provided beyond 
attribution to particular expert rules. This situation is usually the case in 
diagnosis for aerospace systems, where humans have not had sufficient 
experience with current or future systems to build a substantial body of 
diagnostic knowledge. 
Whether they include heuristic or model-based knowledge, some 
combination of both, or other new approaches, knowledge-based systems for 
diagnosis of aerospace systems must confront a number of theoretical and 
practical issues. The following sections review a selection of the current 
research and developments in knowledge-based diagnosis which have 
applicability to aerospace diagnosis domains. 

2.1 Deep Model Diagnostic Systems 
Diagnosis with deep knowledge about the structure and function of systems 
is a relatively new and promising area in knowledge-based systems. 
Theoretical developments and approaches are varied (see for example 
(Davis, 1985)(Genesereth, 1982)(de Kleer, 1986)). However, relatively few 
systems have matured into actual prototype applications or operational 
systems. One example of a diagnostic system using deep models which has 
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been developed for a space system application is discussed in the following 
paragraphs. 
The problem of detecting and isolating faults in the LOX portion of the Space 
Shuttle Launch Processing System (LPS) has led to the development of the 
LES system (Liquid Oxygen (LOX) Expert System ) at the Kennedy Space 
Center (Scarl, 1985). LOX loading of the shuttle's external tank begins six to 
eight hours prior to launch and continues to within seconds of the launch 
(See Figure 1). 
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f i  
(TANKJ-v STORAGE 
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FIGURE 1 : LOX Transfer at KSC 
The LOX loading process is controlled by KSC's automated LPS which 
monitors critical sensor information on the LOX process such as temperature 
and pressure. When a sensor reading is outside of a prespecified range, 
troubleshooting must occur to determine whether the anomaly is an actual 
problem or a sensor malfunction. Delays in troubleshooting can easily result 
in a mission abort. The goal of LES is to troubleshoot the sensor system and 
determine if a reported fault requires termination of the LOX loading process. 
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LES monitors multiple sensors, including sensors on electrical, pneumatic, 
hydraulic, and mechanical systems. The system has been tested on data 
tapes of Shuttle missions and will be demonstrated during actual Shuttle 
launches. In typical example situations, LES determines a diagnosis in 
about ten seconds compared to up to twenty minutes for a human expert. 
The knowledge base in LES includes a functional representation of most of 
the LOX portion of the Launch Processing System at KSC. This includes 
analog and discrete commands and sensors; other objects such as 
transducers, relays, solenoids, valves, LOX pressures and temperatures; and 
other objects, quantities, and relationships whose state the system is 
designed to control or sense. Functional relationships between subsystems 
are encoded in the knowledge base as connectivity between knowledge 
base objects which represent LPS subsystems. The particular representation 
technique used to represent knowledge about subsystems is FRL (Frame 
Representation Language ) (Roberts, 1977). 
When sensor data is received, LES uses information about the status of the 
system and functionally connected systems to determine if the reading is 
discrepant or nominal. This may involve checking the status of a large 
number of connected subsystems. Expected sensor values are derived from 
the functional representation of the system. Thus, when a received piece of 
sensor data is determined to be discrepant, LES immediately has a handle 
on potential sources of the problem based on the derivation of the 
expectation. This means that a diagnostic procedure need not exhaustively 
consider all of the subsystems and can concentrate on a few likely 
candidates. A strictly heuristic approach to diagnosis of this system would not 
have this benefit. 
LES begins diagnosis when a discrepancy is noted. Using the process of 
tracing the functional connections between subsystems, the system collects 
suspected faulty subsystems, relevant commands, and sensor data which 
are related to the original discrepancy. Suspected faulty components are 
proved to be operating properly through a series of reasoning steps. For 
example, when there are intervening objects in the functional connection to 
the noted discrepancy which are known to be operating nominally, then the 
suspected component could not be malfunctioning or the effect would be 
propagated to the intervening subsystems. Components which are 
suspected of faults may also be proved to be operating correctly when there 
is no difference between the expected nominal output of the component and 
a hypothetical faulty output. The expected output is derived from the 
hypothesized inputs from other functionally connected components and a 
model of the suspect component. The hypothetical faulty output is 
correspondingly inferred from the behavior of other components which rely 
on the suspect component for inputs. Clearly, if an output value produced by 
nominal operation is identical to an output which is faulty when viewed by 
functionally "downstream" components, then the detected fault has probably 
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propagated from a fault in a functionally "upstream" component from the 
suspect component and the noted discrepancy. A third method which may 
also prove that a suspect component is operating properly is when the 
hypothetical faulty output from the suspect component results in a 
contradiction to the current discrepancy. In this case, a fault in the suspect 
component could not logically produce the observed faulty behavior in the 
system. 
This apparently simple, yet very effective process of logically deducing first 
the suspected faulty components based on functional connections and then 
verifying a fault using a few rules reveals some of the potential for application 
of model-based reasoning. 

2.2 Shallow Model and Heuristic Diagnostic Systems 
Several systems have been built which combine elements of heuristic rule- 
based diagnosis with diagnosis from first principles such as that found in 
deep model-based reasoners. These systems are sometimes termed 
shallow-model systems. Shallow-model systems sacrifice some of the 
detailed knowledge found in deep models to gain efficiency and provide a 
mechanism for utilizing the intuitive reasoning found in heuristic diagnostic 
systems. Deep model systems typically are computationally expensive and 
do not easily provide methods for integrating heuristic knowledge. 
One such system is the FAITH diagnosis system developed at the Caltech Jet 
Propulsion Laboratory (Friedman, 1983, 1985). (Another is the ARBY system 
developed by McDermott and Brooks (McDermott, 1982) which will not be 
discussed here.) FAITH (for Forming and Intelligently Testing Hypotheses) 
is principally a rule-based system. While production rules in the system may 
encode heuristic knowledge derived from an expert's experience, they also 
encode several standard strategies of diagnosis which experts commonly 
employ in troubleshooting different systems. These strategies, discussed in 
more detail below, rely on shallow models of the system being diagnosed. 
Model knowledge is implemented in the system declaratively as statements 
in the predicate calculus and represents facts about circuit diagrams, system 
block functional diagrams, subsystem types and hierarchies, and problem 
hierarchies. The declarative information provided to the system is called a 
relational map. 
The inference engine in FAITH utilizes predicate logic in the selection and 
instantiation of rules and alternates between two basic phases of a diagnostic 
"cycle". These phases are Explanation (using backward chaining) and 
Confirmation/Denial (using forward chaining). In the Explanation phase, 
hypotheses about the location or characteristics of a fault are proposed. In 
the corresponding Confirmation/Denial phase, evidence is sought which will 
confirm the hypothesis or providea rationale for further refinement. When such 
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evidence is available, the hypothesis may be refined in consequent 
Explanation cycles. When the hypothesis is denied, FAITH attempts to make 
alternative hypotheses. The basic search paradigm in FAITH is a depth first 
search with chronological backtracking, although methods for heuristically 
guiding the search towards the "best" hypotheses are provided, as discussed 
below. 
The selection of rules in each phase is governed by the facts which are true 
in the current context (as in most production rule systems) as well as the 
context of the diagnostic strategy the system is currently using. 
We have experimented with several different diagnostic strategies suggested 
to us by our experts. Strategies are called modes in FAITH and include 
Trace mode, Focus mode, Fault Propagation mode, and Simulation Mode 
among others. New modes are easily added to the system using the 
specialized language FCL (FAITH Control Language ). FCL is also used for 
expressing production rules and the other declarative knowledge in the 
system. Trace mode involves following connections between objects in the 
system being diagnosed. For example, objects could be integrated circuits 
(IC) and connections could be electrical connections between different ICs. 
In general, however, objects and connections in FAITH can represent any 
form of adjacency (Davis, 1985) including functional adjacency (as in a block 
diagram), physical adjacency (as in a blueprint), electrical adjacency (as in a 
circuit diagram), thermal adjacency, etc. Focus mode involves consideration 
of arbitrary groups of objects (such as subsystems) one at a time. If a 
subsystem hierarchy is represented in the relational map, then Focus mode 
would look for a fault in a system by attempting to localize a fault in each of 
the subsystems in the system, and in the subsystems of those subsystems, 
and so on until a fault could be identified. In general, the groups of systems 
considered in Focus mode can be arbitrarily selected by an expert using 
heuristic knowledge or can correspond to some actual organization of the 
system. This flexibility of representation accorded by the FAITH relational 
map and associated diagnostic modes is one of the most powerful 
characteristics of shallow model diagnostic systems. 
From our experience with knowledge engineering for the FAITH system, 
experts will typically change their diagnostic strategy based on the particular 
anomaly at hand, the subsystems being considered for faults, and the state of 
diagnosis. FCL provides mechanisms for implementing these tactical 
changes in diagnostic strategy in an orderly way during diagnosis. The other 
modes and additional features of FCL are discussed in detail in (Friedman, 
1985). 
The FAITH system was created primarily as a vehicle for studying knowledge- 
based automated diagnosis. Development since 1 982 has included 
consideration of several different domains, including the Deep Space 
Network at JPL, digital logic circuits, and many simple examples. The most 
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complex application domain implemented thus far has been diagnosis of the 
Photo-Polarimeter Sensor (PPS) on board the Voyager II spacecraft, now en 
route to the planet Neptune. The PPS instrument is subject to a variety of 
non-predictable, recurrent faults which consume the valuable time of expert 
analysts. Automated diagnosis would speed recovery from these failures and 
free the expert to concentrate on other matters. In this application, the 
relational map constructed for FAITH included knowledge about the 
functional block diagram of the system, circuit diagrams, structure and 
functional knowledge about individual integrated circuits in the system, and 
heuristic knowledge used by the expert to quickly employ the different FAITH 
modes to localize a failure. While the scope of this chapter precludes an 
extended discussion of this application, interested readers are invited to 
contact the author for more details. In summary, however, FAITH could 
identify roughly seventy-six different failures in the systems with 
approximately two hundred and fifty rules and a relational map with several 
hundred declarative FCL statements. The application was demonstrated as a 
prototype, but an operational system was never constructed for budgetary 
reasons. 

2.3 Procedural Knowledge 
Malfunction handling frequently involves the use of elaborate procedures, 
especially in aerospace applications. The Space Shuttle, or Space 
Transportation System (STS) is an excellent example. The invocation of STS 
operational procedures requires considerable technical skill on the part of 
astronauts and mission controllers and attention to myriad constraints, 
including flight rules and avoidance of harmful subsystem interactions. 
Procedures such as these represent a wealth of "compiled" knowledge which 
should be taken advantage of by an intelligent diagnostic system. 
However, in constrast to heuristic and model-based reasoning, the task of 
execution of preformed plans or procedures is an area which has seen little 
effort in Artificial Intelligence research and development. An exception is the 
research being conducted by Michael Georgeff and Amy Lansky at SRI 
International (Georgeff, 1986). They have developed a system for reasoning 
about and performing complex tasks in dynamic environments. The system is 
called PES, for Procedural Expefl System. The knowledge representation 
which they have designed is capable of describing the effects of arbitrary 
procedures. The system's inference mechanism is capable of utilizing this 
knowledge to choose among alternative courses of action and accomplish 
operational goals. In seeking a domain in which to develop and test their 
system and ideas about procedural reasoning, Georgeff and Lansky chose 
the problem of malfunction handling in the Space Shuttle reaction control 
system (RCS). 
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Figure 2 shows a portion of an RCS malfunction procedure. This example 
illustrates some of the characteristics of diagnostic procedures which demand 
considerable technical skill from human operators and make conventional 
automation approaches inadequate. For example, the context or time in 
which a test is made can determine the interpretation placed on the results of 
an action or test. While this is sometimes reflected in the ordering of actions 
within a procedure, context or time dependence can also be a property of 
the overall goal of the procedure as a whole. In the illustration, a successful 
hot fire of the RCS indicates that a processor or other input parameter has 
failed. The identical test and observations in the context of another RCS 
procedure (not shown) can indicate a trickle current circuit failure. 
Knowledge of the context of the test is crucial in obtaining the correct 
interpretation of the results. Several other characteristics of malfunction 
handling procedures introduce complexity. For example, there may be tests 
or actions which may be sensible to perform (e.g., to obtain redundant 
measurements) but which are not strictly necessary to a successful diagnosis. 
Complexity can also be introduced by the need for special constraints to 
guard system safety during testing. Complexity in malfunction handling 
procedures is also high when there are sub-procedures which are dependent 
on global factors such as the state of other subsystems or the phase of flight. 
Faced with this tremendous implicit knowledge embodied in procedures, and 
the concomitant diagnostic power, Georgeff and Lansky argue that it is 
neither convenient nor sensible to "deproceduralize" the knowledge required 
to perform malfunction handling. Most expert system knowledge 
representation techniques, such as frames or production rules like those 
found in commercial expert system shells, are not capable of easily 
representing procedural knowledge. Effective use of this knowledge, they 
contend, requires elaborate control techniques in knowledge base 
construction which reduce modularity. Complex control strategies may also 
confuse interpretation of the rules. This would make later modification 
extremely difficult. 
To address these concerns, the knowledge representation developed by 
Georgeff and Lansky describes procedures by specifying sequences of goals 
which the system should try to achieve in executing a given procedure. 
Goals are represented using a rich formalism which allows such goals as 
"achieve p while maintain q true" to be easily described. This goal language 
captures much of the important control knowledge which is lacking in other 
representations. 
Procedures are represented by recursive transition networks (RTN) which 
resemble flowcharts. Arcs in the RTN are labelled with goal descriptions. 
Different paths through the various nodes in the network constitute the 
different ways a procedure may be executed. Each procedure also has an 
associated effect which will be realized if the procedure is successfully 
executed. *,.. 
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Figure 3 shows an example procedure from the system. Much of the power of 
the representation comes from its ability to declare facts about procedures 
independently of their use. This permits inferencing mechanisms to reason 
about composite goals and promotes explanation capabilities, verifiability of 
procedures, and evolvability of the knowledge base. The procedure 
graphically depicted in the figure may be factually stated as 

If a fuel cell has a voltage drop and it can subsequently be determined that 
the pattern is uniform, and if it can thereupon be established that the 
humidity is high, and if finally it is possible to achieve a lower humidity, then 
if follows that the fuel cell will be rendered operable. 

Associated with procedures are invocation conditions which are statements 
of the proper circumstances in which procedure invocation can occur. 
Invocation conditions are arbitrary logical expressions which may include 
constraints on known facts or active goals. The combination of procedure 
and invocation condition is called a knowledge area (KA). KAs are executed 
by the inference engine in Georgeff and Lansky's system only when 
invocation conditions are evaluated and found to be "true". 

INVOCATION: (FACT (COMPONENT $MODULE ECLSS)) 
AND (GOAL ( I  (OPERABLE $MODULE))) 

EFFECTS: ( I  (OPERABLE $MODULE)) 
BODY: 

(? (VOLTAGE-DROP $MODULE)) 1 
(? (HIGH HUMIDITY)) ,mx UMIDITY) 

El 
\ 

(! (REDUCED HUMIDITY)) \ 

(-> (OPERABLE $MODULE)) 1 
ELI 

FIGURE 3: Portion of KA for Fuel Cell Malfunction 
KAs achieve goals by causing the inference engine to achieve each of the 
goals along some path in the body of the KA. For example, in the example 
fuel cell malfunction KA, the system would first try to establish whether a 
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given fuel cell suffered from a voltage drop. This might involve a simple test 
directly, or invocation of some other KA, thus allowing KAs to chain together 
in the diagnostic reasoning process. To continue with the example, if a 
voltage drop was detected, the KA would then test the pattern of voltage loss, 
then humidity, etc. The combination of an explicit representation of the 
sequence of goals to achieve along with flexibility in the choice of procedures 
to achieve those goals is a main source of PES'S diagnostic power. 
A rule-based representation of the same procedure in our example would be 
significantly more complex and require multiple rules along with knowledge 
about how to "chain" them together. Davis and King (Davis, 1977) have 
provided an analysis of control problems with production rule systems which 
is still relevant. However, when such control can be conveniently specified, 
such as in the FAITH system described earlier, production rules can also be 
an effective representation. 
The basic structure of PES from the user's point of view consists of three 
essential components: (1) a system data base which represents given and 
derived facts during diagnosis; (2) the domain procedural knowledge 
encoded as KAs; and (3) the current set of goals which the system is trying 
to achieve. Finally, the system also includes a sophisticated user interface 
which allows a system developer to graphically create and manipulate KAs 
and run an application system. With the widespread availability of checklists 
for many systems (such as the Shuttle) which require automation of diagnosis 
processes, systems such as PES which can easily take advantage of that 
source of knowledge may have substantial utility. 

2.4 Problem Hierarchy Specialists 
A group of researchers headed by B. Chandrasekaran at Ohio State 
University has been investigating another promising approach to diagnosis 
(Chandrasekaran, 1983). Their approach is based on the paradigm of 
cooperating specialists. The central problem-solving view of diagnosis, they 
contend, is classificatory activity. Strongly associated with this type of 
problem solving are specialized knowledge and system organizations, and 
special strategies for performing diagnosis. 
Classificatory diagnosis is the act of identifying the current problem 
description in terms of a specific node in a predetermined diagnostic 
hierarchy, where nodes correspond to diagnostic hypotheses. General 
hypotheses are at the top of the hierarchy, and more specific hypotheses are 
towards the bottom. Such a hierarchy could (but need not) represent disease 
classes and specific diseases in those classes. 
The Ohio State approach (called CSRL (Chandrasekaran, 1983) and 
exemplified in several systems, e.g., MDX, which diagnoses cholestatic 
diseases, and Auto-Mech, which troubleshoots automobile fuel systems) is 
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unique in that associated with each node in the classification hierarchy is a 
specialist which contains the specific diagnostic knowledge necessary to 
evaluate the presence or absence of the problem in the current case 
description. Knowledge is thus highly localized in systems built using CSRL 
rather than highly distributed as would be the case in a conventional rule- 
based system. 
The basic strategy of diagnosis in the system is one of hypothesis refinement. 
In this strategy, specialists seek to establish the hypotheses they represent. 
At some level of confidence, a specialist may conclude that the current 
hypothesis is valid or that more specialized hypotheses are worth pursuing. 
In this case, the specialist invokes its sub-specialists, i.e., those specialists 
which represent more specific diagnoses in the hierarchy. Diagnosis thus 
proceeds down the classification hierarchy towards more specialized 
diagnoses and halts when a specialist with no sub-specialists has been 
established. (The problem of when problem-solving like this should 
terminate in general is of significant theoretical interest.) 
Figure 4 shows an example classification hierarchy for an application of t h i s  
approach in the domain of auto repair. The hierarchy is for diagnosis of the 
fuel system in 1980 model era automobiles. 

ENGINE 

FUEL 

DELIVERY MIXTURE VACUUM AIR-INTAKE BAD-GAS 
I I I I I 

... ... ... ... I 
I I 

CARBURETOR-GASKET VACUUM-HOSES 

FIGURE 4: Partial Diagnostic Hierarchy for CSRL Auto-Mech 
The approach of having the location and application of diagnostic knowledge 
tightly constrained yields some valuable benefits for the development of 
diagnostic systems. Since knowledge is localized within specialists and 
interaction among specialists is well-defined, concerns about global 
interaction are minimized in this approach. This supports the process of 
incremental specification and refinement of the knowledge bases commonly 
required in the development of knowledge-based systems. In the CSRL 
system, portions of the knowledge base may be developed in relative 
isolation and then executed. Real performance such as this provides more 
meaningful feedback to system developers than comments on a knowledge 
base representation implemented only on paper. However, the developers of 

14 



the system point out that significant problems remain to be solved, including 
how a variety of types of knowledge and problem-solving procedures can be 
integrated with the classificatory strategy. 
A similar approach has been adopted by Siemens, Golden, and Ferguson at 
Ford Aerospace & Communications Corporation in their development of an 
expert system for satellite monitoring and anomaly management (Golden, 
1985), (Siemens, 1986). While the objectives of their system are more 
comprehensive than the Ohio State project (including monitoring, situation 
assessment, goal determination and planning as well as diagnosis), their 
approach to diagnosis has many of the same functional characteristics of the 
CSRL approach. 
Like the CSRL approach, diagnostic knowledge in the Ford system (called 
StarPlan) is organized hierarchically into anomaly classes. In StarPlan, 
specialized knowledge and procedures for determining specific anomalies 
are called monitors. Associated with each monitor is a guardian module 
which scans incoming telemetry for data symptomatic of failures which may 
be diagnosed by the monitor. A significant amount of control knowledge is 
incorporated to handle multiple alarms and other conditions arising from the 
interaction of the two types of modules. Each monitor contains goal-driven 
rule-sets which are specialized towards identification and resolution of the 
specific anomaly class, as in the CSRL specialist approach. 
As Siemens et al. discuss, there are significant problems in managing the 
interaction of the multiple "mini" expert systems embodied in a distributed 
approach like their own and CSRL's. For example, the control of diagnosis 
suffers in both systems when a single fault anomaly introduces multiple 
symptoms, thereby activating multiple specialists in the CSRL system and 
multiple monitors in the Ford system. These individual expert systems then 
work on independent hypotheses which may utilize conflicting and 
sometimes contradictory diagnostic procedures. In Starplan, a level of rneta- 
monitors has been described (but not implemented) to handle this situation. 
Meta-monitors determine which hypothesis within a group of monitors is most 
urgent and then provide control of diagnosis to that hypothesis. 
Meta-monitors in StarPlan are usually centered around individual satellite 
subsystems. This is one way in which object-oriented classes and problem- 
oriented classes can interact in systems of this type. They point out, however, 
that sometimes the structure of the partitions between different classes and 
the object and anomaly classes is counter-intuitive and therefore may 
inappropriately constrain descriptions by domain experts. Since control 
strategies based on Meta-monitors defeat Starplan's orientation towards 
highly modularized knowledge bases and introduce significant control 
structure issues of their own, recent designs for a successor to StarPlan 
(called StarPlan II) have abandoned the Meta-monitor approach in favor of a 
model-based representation based on individual satellite objects and their 
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functional behavior. Unfortunately, details of the new approach are 
discussed only in proprietary Ford Co. documentation and are not open to 
general scrutiny. 
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3.0 Coordinating Hybrid Knowledge in Diagnostic Systems 
Earlier sections have described knowledge-based systems for diagnosis 
which utilize different kinds of knowledge, knowledge representations, and 
inference mechanisms. However, some types of diagnostic reasoning must 
make use of multiple types of knowledge. One expert troubleshooting 
technique is to use heuristic, experiential knowledge to quickly isolate 
candidate faults and then rely on deeper causal or model-based knowledge 
to analyze the problem in detail and eliminate incorrect hypotheses. 
A knowledge-based diagnostic system which seeks to exploit this type of 
technique needs a control structure which can switch easily between the 
different types of reasoning strategies. Such a system also requires multiple 
knowledge representations suited to each type of knowledge employed 
(sometimes called "hybrid" knowledge systems) and may need mechanisms 
to easily translate or refer knowledge from one representation to another. 
Fink (Fink, 1985) has addressed the problem of coordinating two very 
different diagnostic techniques utilizing different knowledge representations 
and reasoning strategies. Her system, called IDM (Integrated Diagnostic 
Model) has the purpose of diagnosis and repair of electro-mechanical 
systems. It consists of three main modules: an Experiential expert, a 
Physical expert, and an Executer [sic]. The role of the Executer is to direct 
the problem-solving process utilizing each of the other modules as 
appropriate to the problem at hand and the context of the diagnosis. 
Each of the Experiential and Physical expert modules has its own knowledge 
base. The Experiential expert knowledge base encodes the initial 
experiential, heuristic causal reasoning for familiar problems. This includes 
low-level facts and observables, such as voltage measurements, and easily 
deducible quantities from those facts based on experience, e.g., physical 
states of the device such as a generator not recharging a battery. Finally, the 
Experiential knowledge base encodes solutions in the form of quick fixes for 
well recognized problems. The general structure of the knowledge base 
resembles that of Casnet (Weiss, 1978). 
The Physical expert knowledge base encodes deeper knowledge of the 
system to be diagnosed, in particular, a "physical/functional" model of the 
device. This knowledge, represented in object-oriented style using a 
semantic network based on frames, supports qualitative simulation of the 
device (Kuipers,l984). 
The Executer module has unique knowledge which represents how the 
functional connections between individual objects in the Physical expert 
knowledge base are correlated with the heuristic knowledge in the 
Experiential expert knowledge base. This knowledge base also includes 
information about how to transfer knowledge back and forth during problem- 
solving. 
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FIGURE 5: Overview of the Integrated Diagnostic Model (IDM) 
While an open research topic is to clarify the nature of the knowledge 
required by the Executor and to design suitable representations and 
inference mechanisms, the other modules utilize more conventional control 
mechanisms. The Experiential expert utilizes a best-first search based on an 
evaluation of a rating of each alternative hypothesis. Ratings are established 
based on probability, cost, or difficulty of achieving a diagnosis based on the 
hypothesis. The Physical expert utilizes a version of discrepancy detection 
methodology originated by Davis (Davis, 1985) and followed by other 
systems (such as the LES system, described earlier). 
One unique contribution of Fink's IDM system is that it does not require a 
consistent view of the problem between the two expert modules. The 
Executer module arbitrates any disagreements between modules and exerts 
control over the propagation of information between the two "loosely coupled" 
expert systems. The techniques being developed as part of this research will 
be important for hybrid diagnostic systems which must utilize the knowledge 
from a variety of different human experts who employ troubleshooting 
strategies based on their own experience as well as more fundamental 
knowledge about the structure and function of the system they are 
diagnosing . 
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A diagnosis system being developed by Kathy Abbott at NASA Langley 
Research Center to assist aircraft flight crews also includes multiple 
knowledge-based modules with disparate knowledge representations and 
reasoning strategies (Abbott, 1985a, 1985b, 1986). Unlike Fink's IDM system 
described above, Abbott's program, called DRAPhys (for Diagnostic 
Reasoning About Physical Systems ), includes knowledge-based modules 
which are tightly coupled to a specific strategy of diagnostic reasoning. In 
addition, DRAPhys also includes a knowledge-based module which performs 
qualitative interpretation of sensor data as a pre-process to diagnosis. An 
explanation system which pre.sents the result of the diagnosis to the flight 
crew is currently being developed. 
The input to the fault monitoring and diagnosis process in DRAPhys is 
quantitative sensor data. The fault monitor compares the sensor data with the 
output of a quantitative model that simulates the normally functioning physical 
system. A fault is signaled by the monitor when the expected system state 
derived from the system model differs significantly from the actual system 
state. When a fault is detected, the monitor provides the diagnostic process 
with a set of the abnormal sensor values in qualitative form (e.g., "fuel flow is 
high") along with time tags to show the sequence of symptoms. 
DRAPhys' diagnostic process is divided into several discrete stages as 
shown in Figure 6. Each stage has a unique knowledge representation and 
diagnosis strategy. The first stage utilizes heuristic, experiential knowledge 
compiled from the expertise of aircraft flight crews to compare fault symptoms 
with known fault types and failure modes. The most commonly occurring 
faults are detected and diagnosed in this stage. However, the first stage will 
be unable to identify the cause of failures which are unusual or difficult to 
diagnose from the qualitative sensor information provided. 
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FIGURE 6: DRAPhys Multi-Stage Diagnostic Process 
The second stace of DRAPhys' diagnostic process is a second knowledge- 
based system which is based on a functional model of the underlying system. 
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The objective of this stage is to localize a fault by devising hypotheses based 
on how the effects of a fault would propagate through the aircraft's systems. 
When this process (described in more detail below) fails to identify a unique 
failed aircraft subsystem, the third stage of diagnosis is entered. 
The purpose of the third and final stage of diagnosis is to suggest "active" 
tests which can be executed by the pilot to provide additional, useful 
information for diagnosis. The results of this test are interpreted by various 
stages to eliminate alternative hypotheses and provide a unique diagnosis to 
the pilot. When a unique diagnosis cannot be identified, the diagnostic 
modules provide information to the explanation mechanism to inform the pilot 
of the potentially failed functions and reduced capability of the aircraft. 
Abbott's DRAPhys system is specifically directed towards real-time fault 
diagnosis. As she points out (Abbott, 1985a), real-time fault diagnostic 
systems differ substantially from other systems which can afford to perform 
fault diagnosis off-line. In particular, the purposes which those systems serve 
are substantially different. In real-time fault diagnosis, the objective is less to 
identify the specific cause of a failure and more to discover the effects of a 
failure on the functionality of the system as a whole and what remedial 
actions are appropriate. The need to identify all affected subsystems with 
reduced performance is important. 
Real-time performance affects the information available for diagnosis and the 
particular reasoning strategies which may be employed. One consideration 
is that a physical system's behavior may change as time progresses while 
performing fault diagnosis. During diagnosis, failure effects may propagate to 
other functionally or physically connected subsystems. This dynamically 
changes the failure symptoms with which the diagnosis system must reason. 
Abbott's program is designed to make unique use of this dynamically 
changing information about the system to identify the specific physical 
cause(s) of a failure, the fault type, responsible and affected system 
components, and the fault propagation history. 
Each of the stages of the diagnostic process is able to utilize the sequence of 
changing fault symptoms to focus the reasoning process and eliminate false 
hypotheses. The first stage includes a rule-based system which was 
extended to permit temporal reasoning functions (Allen, 1984). This helps 
capture pilots' knowledge about changing symptoms associated with specific 
failures, e.g., when a foreign object is ingested by the turbofan engine, a pilot 
described the symptoms saying, "First, performance values will fluctuate, then 
EGT and EPR will decrease ...'I. Using dynamic information early in the 
diagnostic process helps to distinguish among faults which may have the 
same initial symptoms but diverge in subsequent behavior. 
The functional and physical models used by the second stage of diagnosis 
can be thought of as a directed graph. A functional interaction or physical 
adjacency between two subsystems is represented as an arc in the graph. 
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The diagnostic process in stage two attempts to map failure symptoms to 
specific components in the models, and then determine the additional 
affected components by tracing through the graph. The time-order of 
symptoms benefits this process by suggesting or confirming a sequence of 
components affected by a failure. The first component in a functionally 
connected sequence of components exhibiting failure symptoms is deduced 
to be the component responsible for the failure. A model of physical 
adjacency is used to resolve ambiguity, such as when a fault propagates 
physically between subsystems which are not functionally connected. 
Abbott points out a characteristic of the model-based approach to diagnosis 
which should be considered in the design of such systems. Typically, 
diagnoses are made in this approach by comparison of actual behavior 
against the nominal behavior predicted in a functional model of the system. 
However, modelling a faulted system can be computationally complex 
because of the number and variety of failures which are possible. One 
solution to this problem is to provide a functional model which is very under- 
constrained, Le., the model represents a large set of behaviors rather than 
the small subset of behavior classified as "nominal". A simple model of 
functional adjacency between components, such as the one used in 
DRAPhys, is capable of representing many faulted configurations. Qualitative 
causal models also have this advantage. 
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4.0 Conclusion 
In this document, we discussed several different approaches to automated 
diagnosis using knowledge-based systems. One way of characterizing these 
different approaches is by the type of knowledge which they employ, how the 
knowledge is represented, and the inference mechanisms required to 
perform the diagnostic reasoning. Several examples of systems were 
presented to illustrate the wide variety of types of knowledge and reasoning 
mechanisms, and also to expose some of the theoretical and practical issues 
in automated diagnosis. A significant issue for the future is how knowledge- 
based diagnostic systems can make use of multiple types of knowledge. 
Several approaches to this problem were also discussed. 

. Very few knowledge-based systems for diagnosis have completed the 
developmental process and entered into actual day-to-day operations. 
Several, such as the Kennedy Space Center LES system, are close. With the 
promise and need for higher performance automated diagnosis, more of the 
approaches discussed above will mature and find application in the 
aerospace domain. 
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